# test_pointcloud_with_intrinsic_matrix ## 1 Basic Functionality - Use camera intrinsic parameters to obtain a depth map and convert it into a point cloud. ## 2 Implementation Process ### 2.1 Environment Initialization ```python env = RFUniverseBaseEnv(scene_file="PointCloud.json") ``` - Import the scene from the pre-configured `PointCloud.json` file. ### 2.2 Obtain Camera Intrinsic Parameters and Images ```python nd_intrinsic_matrix = np.array([[960, 0, 960], [0, 960, 540], [0, 0, 1]]) camera1 = env.GetAttr(698548) camera1.GetDepthEXR(intrinsic_matrix=nd_intrinsic_matrix) camera1.GetRGB(intrinsic_matrix=nd_intrinsic_matrix) camera1.GetID(intrinsic_matrix=nd_intrinsic_matrix) env.step() ``` ### 2.3 Convert to Point Cloud ```python image_rgb = camera1.data["rgb"] image_depth_exr = camera1.data["depth_exr"] local_to_world_matrix = camera1.data["local_to_world_matrix"] point1 = dp.image_bytes_to_point_cloud_intrinsic_matrix( image_rgb, image_depth_exr, nd_intrinsic_matrix, local_to_world_matrix ) ``` - `image_bytes_to_point_cloud_intrinsic_matrix`: Generates the scene's point cloud through the RGB image, depth map, intrinsic matrix, and the transformation matrix from local to world coordinates. ### 2.4 Visualize Point Cloud ```python # unity space to open3d space and show point1.transform([[-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) point2.transform([[-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) coordinate = o3d.geometry.TriangleMesh.create_coordinate_frame() o3d.visualization.draw_geometries([point1, point2, coordinate]) ```